

nag_incomplete_gamma (s14bac)

1. Purpose

nag_incomplete_gamma (s14bac) computes values for the incomplete gamma functions $P(a, x)$ and $Q(a, x)$.

2. Specification

```
#include <nag.h>
#include <nags.h>

void nag_incomplete_gamma(double a, double x, double tol, double *p,
                           double *q, NagError *fail)
```

3. Description

This function evaluates the incomplete gamma functions in the normalised form

$$\begin{aligned} P(a, x) &= \frac{1}{\Gamma(a)} \int_0^x t^{a-1} e^{-t} dt \\ Q(a, x) &= \frac{1}{\Gamma(a)} \int_x^\infty t^{a-1} e^{-t} dt, \end{aligned}$$

with $x \geq 0$ and $a > 0$, to a user-specified accuracy. With this normalisation, $P(a, x) + Q(a, x) = 1$.

Several methods are used to evaluate the functions depending on the arguments a and x , the methods including Taylor expansion for $P(a, x)$, Legendre's continued fraction for $Q(a, x)$, and power series for $Q(a, x)$. When both a and x are large, and $a \simeq x$, the uniform asymptotic expansion of Temme (1987) is employed for greater efficiency – specifically, this expansion is used when $a \geq 20$ and $0.7a \leq x \leq 1.4a$.

Once either of P or Q is computed, the other is obtained by subtraction from 1. In order to avoid loss of relative precision in this subtraction, the smaller of P and Q is computed first.

This function is derived from subroutine GAM in Gautschi (1979b).

4. Parameters

a

Input: the argument a of the functions.

Constraint: $a > 0.0$.

x

Input: the argument x of the functions.

Constraint: $x \geq 0.0$.

tol

Input: the relative accuracy required by the user in the results. If **nag_incomplete_gamma** is entered with **tol** greater than 1.0 or less than **machine precision**, then the value of **machine precision** is used instead.

p

q

Output: the values of the functions $P(a, x)$ and $Q(a, x)$ respectively.

fail

The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

On error nag_incomplete_gamma returns with a value of 0.0 for **p** and **q**.

NE_REAL_ARG_LE

On entry, **a** must not be less than or equal to 0.0: **a** = *<value>*.

NE_REAL_ARG_LT

On entry, **x** must not be less than 0.0: **x** = *<value>*.

NE_ALG_NOT_CONV

The algorithm has failed to converge in *<value>* iterations.

Convergence of the Taylor series or Legendre continued fraction has failed within the specified number of iterations. This error is extremely unlikely to occur; if it does, contact NAG.

6. Further Comments

The time taken for a call of nag_incomplete_gamma depends on the precision requested through **tol**, and also varies slightly with the input arguments **a** and **x**.

6.1. Accuracy

There are rare occasions when the relative accuracy attained is somewhat less than that specified by parameter **tol**. However, the error should never exceed more than one or two decimal places. Note also that there is a limit of 18 decimal places on the achievable accuracy, because constants in the function are given to this precision.

6.2. References

Gautschi W (1979a) A Computational Procedure for Incomplete Gamma Functions *ACM Trans. Math. Software* **5** 466–481.

Gautschi W (1979b) Algorithm 542: Incomplete Gamma Functions *ACM Trans. Math. Software* **5** 482–489.

Temme N M (1987) On the computation of the incomplete gamma functions for large values of the parameters *Algorithms for Approximation* J C Mason and M G Cox (ed) Oxford University Press.

7. See Also

None.

8. Example

The following program reads values of the argument *a* and *x* from a file, evaluates the function and prints the results.

8.1. Program Text

```
/* nag_incomplete_gamma(s14bac) Example Program
 *
 * Copyright 1990 Numerical Algorithms Group.
 *
 * Mark 2 revised, 1992.
 */

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nags.h>
#include <nagx02.h>

main()
{
    double a, p, q, tol, x;

    /* Skip heading in data file */
    Vscanf("%*[^\n]");

```

```

Vprintf("s14bac Example Program Results\n");
tol = X02AJC;
Vprintf("      a      x      p      q\n");
while (scanf("%lf %lf", &a, &x) != EOF)
{
    s14bac(a, x, tol, &p, &q, NAGERR_DEFAULT);
    Vprintf("%12.4f%12.4f%12.4f%12.4f\n", a, x, p, q);
}
exit(EXIT_SUCCESS);
}

```

8.2. Program Data

```

s14bac Example Program Data
2.0   3.0
7.0   1.0
0.5   99.0
20.0  21.0
21.0  20.0

```

8.3. Program Results

```

s14bac Example Program Results
      a      x      p      q
2.0000  3.0000  0.8009  0.1991
7.0000  1.0000  0.0001  0.9999
0.5000  99.0000 1.0000  0.0000
20.0000 21.0000  0.6157  0.3843
21.0000 20.0000  0.4409  0.5591

```
